Learning Spaces Collaboratory Webinar

Dissolving Disciplinary Boundaries & Embracing the Future: 21st century Spaces for Undergraduate STEM Learning Communities

January 28, 2015
The central LSC strategy is to create and catalyze a feedback loop through which the broad community of stakeholders can:

- ask and respond to questions about all aspects of planning learning spaces
- collaborate in exploring lessons learned from the community of experienced practitioners
- come to understand what is known about how the quality and nature of learning spaces affects the quality and nature of learning in the undergraduate setting.
Learning Outcomes

• About transforming the experience of learners in undergraduate STEM courses when the focus is on integrative, interdisciplinary, innovative learning

• About re-imagining and repurposing new kinds of physical spaces to accommodate new kinds of integrated curricular initiatives, new kinds of pedagogical practices

• About what works in realizing interdisciplinary STEM learning environments.
Facilitators
- Dennis Cuddy
- Russ Ellis
- Carolyn H. Eyles
- William R. LaCourse
- David O. Ribble
- Sarah Symons

Moderator
- Jeanne L. Narum
McMaster University
Hamilton, Ontario, Canada

Honours Integrated Science Laboratory
Who are we?

Carolyn Eyles, Director

Russ Ellis, Lab Coordinator

Sarah Symons, Teaching Professor

Members of the Integrated Science (iSci) Instructional Team (about 17 in all)
• 4-year Honours B.Sc., 60 students/year
• Interdisciplinary, research-based, collaborative, self-directed learning
• Appropriate learning spaces are essential
 • student study/collaboration, laboratory
Institutional Impact

• iSci program is viewed as a ‘petri dish’/sandbox for new and innovative pedagogies & approaches to learning

• Adopted/adapted to other (larger) programs
 • e.g. Life Science program – 1000 students/year

• Longitudinal pedagogical research project evaluating success
Dennis Cuddy, Manager of Administration and Facilities for the Dept of Chemistry and Biochemistry

William R. LaCourse, Dean, College of Natural and Mathematical Sciences
• **Provide Distinctive Undergraduate Experience**: convivial social learning space – a socially connected learning environment - in proximity to co-located library services, tutoring, information resources and information technology.

• **Improve Student Retention and Graduation Rates**: encouragement of peer to peer learning, group learning, informal student/faculty interactions; tutoring, library research assistance, and tech support in convenient proximity and integrated with learning activities; environmental positive reinforcement of a sustained study regime.
UMBC—ILSB
Interdisciplinary Life Sciences Building

Planned for 2016

• A suite of “active” learning spaces
• No departmental ownership
• A “collaboration requirement” for research space
• An incubator for innovation
• Design criteria: student interaction
Trinity University

David O. Ribble,
Murchison Term
Professor and Chair of Biology
Center for the Sciences and Innovation
Design & development of program – 2005-2009

- involved faculty reps (junior & senior) from each science discipline, Chief Librarian, lab coordinator, student

First intake September 2009

Design of laboratory – 2011 - 2013 (opened September 2013)
Space Design

Pedagogy

Space
Example: Level 1 Research Project: Planetary Exploration: Mars analogue component

Plan a mission to Mars
Outline scientific goals and mission objectives; design an undergraduate experiment

Mathematics
Use of mathematical software to simulate planetary motion

Physics
Kepler’s laws, angular momentum, Newtonian gravity

Life Science
Extremophiles, biogeochemical cycles

Earth Science
Earth as an analogue: fluvial processes, tectonic activity, glacial movement

Chemistry
Combustion of rocket propellants

Psychology
Manned vs. unmanned missions, group dynamics
Quick facts:
• opened September 2013
• 3000 square feet
• renovated office space

Laboratory space suitable for:
• wet labs requiring fume hoods (chemistry, biology)
• dry labs requiring various equipment & supplies (physics, earth science, biology, math)
• collaborative and active learning, different instructional styles
• student learning & exploration of science
Flexibility in Design

Level 2 Neuroscience

Level 1 Physics

Level 1 Chemistry

Level 2 Thermodynamics
Location
Architectural Layout

- Storage room
- Prep room
- Fume hood zone
- Main lab space
- Office
Energy-efficient ductless Green hoods utilize the latest Neutrodine® technology.

Initial cost is greater, but Green fume hoods cut energy costs by 96% and reduce operating costs by 70%.
Accessibility & Safety

The iSci lab was designed to be fully accessible and meet the standards of the Accessibility for Ontarians with Disabilities Act.
Connecting classroom learning... with hands-on applications

Level 1 Research Project 3: Sustainable Energy
Questions & Comments
Dennis Cuddy, Manager of Administration and Facilities for the Dept of Chemistry and Biochemistry

William R. LaCourse, Dean, College of Natural and Mathematical Sciences
Where it all started
Steps Along the Way
Making science visible via glass windows & capitalizing on windows for documenting and enriching discussions.
What works: Visibility

Windex for cleaning
Makes the doing of science visible
Serves as prompter for the lesson for the day
Making science visible via glass windows & capitalizing on windows for documenting and enriching discussions.
The mantra—flexibility now and into the future (benches can be lowered for outreach and for accessibility).
What works: Flexibility
Camera can:

- capture demonstrations and team-work for sharing within the lab and to teaching labs on the 3rd floor

- capture what is happening in the SLC for purposes of assessing how the space is being used (preparatory for future planning)
What works: Flexibility
What works: Flexibility
What works: Active collaborating teams
What works: Active collaborating teams
Questions & Comments
David O. Ribble,
Murchison Term
Professor and Chair of Biology
Trinity University Points

• Innovation
• Integrated project grew from HHMI curricular integration
• Importance of planning committee
• Importance of metrics/impacts
• Maintenance/sustaining of integration
Promote Collaborative Learning, Scholarship, and Creativity across Campus

Provide Active and Exciting Coursework for Non-Scientists

Enhance Existing Disciplinary Science and Engineering Programs

The Premier Institution in Science, Math and Engineering

Promote Integration Across Sciences and Engineering
Trinity University
CSI

- Biology
- Computer Science
- Chemistry
- Engineering
- Psychology

- Biochemistry
- Neuroscience

- Geology
- Mathematics
- Physics
• Biology
• Computer Science
• Chemistry
• Engineering
• Psychology

• Biochemistry
• Neuroscience

• Geology
• Mathematics
• Physics
So how can a biology curriculum be organized to “induce students to enjoy science from the first day” of their academic experience in a biology course?

Project Kaleidoscope, 1991
thinking
Comfortable, flexible, lounge-like space, that lets ideas take flight.

making
A space that allows students to utilize a wide range of tools— from post-its, to interactive whiteboards, to hand tools— for brainstorming and prototyping.

modeling
This computer lab is a technology intensive space that does double duty as a teaching and open lab— enabling individuals and teams to interactively utilize digital tools for virtual modeling.
• student competencies
• student centered and relevant
• authentic research experiences
PROJECT GOALS

1. Increase interest by prospective students in science, math, and engineering (STEM).
2. Increase interest in science and engineering as career among Trinity students.
3. Increase interest in science and engineering by non-science majors.
4. Improvement in productivity among faculty and students in science and engineering.
5. Facilitate and increase inter/multidisciplinarity among sciences.
6. Improve career opportunities for students in science, math, and engineering.
Facilitator Conversation
Auraria Library ✦ Berea College ✦ Bryn Mawr College ✦ Calvert Wright Architecture, PC ✦ Calvin College ✦ Carleton College ✦ Celli-Flynn Brennan ✦ Claremont Colleges Library ✦ CSO Architects ✦ Grimm + Parker Architects ✦ Harford Community College ✦ Harley Ellis Devereaux ✦ HOK ✦ Hord Coplan Macht ✦ James Madison University ✦ Linfield College ✦ Marshall Craft Associates ✦ McMaster University Library ✦ MIT Libraries ✦ Nebraska Wesleyan University ✦ Pacific Lutheran University ✦ Payette Associates Inc. ✦ SERA Architects ✦ SRG Partnership, Inc. ✦ Stantec Architecture Inc. ✦ SWBR Architects ✦ Syracuse University ✦ The Galloway School ✦ The S/L/A/M Collaborative ✦ UCLA ✦ Union College ✦ University at Albany ✦ University of Arizona ✦ University of Illinois/Center for Innovation in Teaching and Learning ✦ University of Richmond ✦ University of Wisconsin-La Crosse ✦ University of Wisconsin-Madison ✦ VMDO Architects ✦ Willamette University
Spring LSC Webinars

• **Adapting Classrooms for Student-centered, Individualized, and Technologically-supported Pedagogies**
 March 5, 2015

• **Classrooms for Flipped or Blended Learning**
 April 15, 2015

• **Implementing an AAU STEM Initiative: Integrating Renewal of How and Where Learning Happens**
 May 5, 2015

• **Reframing the Concept of Maker Spaces: Maker Spaces Reinvented**
 June 10, 2015