LSC Webinar:

The University of Minnesota Experience with Active Learning Classrooms

Presenters:

Jeremy Todd, Director, Office of Classroom Management
J.D. Walker, Manager, Research and Evaluation, Office of Information Technology
Robin Wright, Associate Dean, Department of Genetics, Cell Biology and Development

Prototype Classroom Development

 What prompted the UMN to explore this specific alternative style of classroom?

Review of inventory

Feedback from faculty and students

Benchmarking: SCALE-UP, NCSU TEAL, MIT

LSR Comparison Studies: Summary

Controlled studies have shown that new learning spaces:

- Help students to outperform final grade expectations.
- Affect teaching-learning activities, even when the instructor attempts to hold these activities constant
- Do not conduce to a lecture-based approach; student performance improves when instructors move to active, student-centered teaching methods.

Active Learning Classroom Pilot Initiative

- Student-centered, flexible, innovative design
- Observation, evaluation and research of space

Prototype Classroom Evaluation

 Academic & Administrative ALC coordination

 Instructor and student expectations in ALCs

 Faculty development and support services for pedagogical and technical support and technology needs Active Learning Classrooms Pilot Evaluation: Fall 2007 Findings and Recommendations

Prepared By The ALC Pilot Evaluation Team

Thank you to the following members of the Active Learning Classrooms (ALC) Pilot Evaluation Team for their contributions to this report and their dedication to faculty development and support: Deb Alexander, Bradley A. Cohen, Steve Fitzgerald, Paul Honsey, Linda Jorn, John Knowles, Peter Oberg, Jeremy Todd, J.D. Walker, and Aimee Whiteside.

ALC physical space

- Room, furniture and group size
 - Room: 2800ASF, 126 students = 22-23ASF/student
 - Furniture shape and size?

STSS Acoustics

- Acoustical isolation maintained while using raised floors and operable partitions
- Provides enhanced:

Teaching & Technology in ALC

- Physical classroom setting: ALC vs. traditional
- Student collaboration using technology to collect and analyze information on demand
- Audio/video to further the shared learning process

Questions?

The Impact of Space: New Empirical Research in Active Learning Classrooms

J.D. Walker, Ph.D.

Research Fellow

Office of Information Technology

Learning Spaces Research (LSR): Pilot Phase

- Began in fall 2007, OIT & OCM
- Methods: Interviews, surveys of instructors and students using Active Learning Classrooms (ALCs)
- N = 169

Active Learning
Classroom at the U of
M (BioSci 64)

LSR: Comparison Studies

- Traditional classroom vs ALC
 - Post-Secondary Teaching & Learning 1131
 - Biology 1003
- ALC vs ALC: Adapting instruction
 - Family Social Science 3101

- N = 263
- Compared two sections (ALC & traditional), both in STSS
- Replication of 2008 study

Student Perceptions, Aggregated Survey Items

NOTE: ***p* < .01; ****p* < .001; *****p* < .0001

Average Composite ACT Scores, by Section

^{*} Mean difference p < .05

Expected vs. Actual Average Course Grades, Traditional vs. ALC

NOTE: **p* < .05; *****p* < .0001

LSR Comparison Studies

Expected versus Actual Grades in Three ALC Courses

Mechanisms: Classroom Activities and Instructor Behaviors

NOTE: **p* < .05; ***p* < .01; ****p* < .001

Mechanisms: Social Context and Alliance

Alliance =

- Respect
- Responsibility
- Cooperation
- Communication
- Security

(Billson & Tiberius, 1991; Meyers, 2008)

 Alliance linked to engagement, improved outcomes.

Mechanisms: Social Context and Alliance

Evidence of alliance:

- Faculty focus groups and interviews:
 - "they do ask questions that I don't know the answer to and... it feels much more comfortable to say, that is a really good, probing question."
- Student focus groups and surveys:
 - "It was awesome having a group of nine kids to whom I could always utilize in my time of need/to bounce ideas off of."

LSR Comparison Studies: Summary

Controlled studies have shown that new learning spaces:

- Help students to outperform final grade expectations.
- Affect teaching-learning activities, even when the instructor attempts to hold these activities constant
- Do not conduce to a lecture-based approach; student performance improves when instructors move to active, student-centered teaching methods.

ALC Research: New Directions

New research, fall 2012:

- Innovative teaching in ALCs: What are best practices in new learning spaces?
- Hybrid learning in ALCs: Can student-faculty contact hours be radically reduced, while maintaining good outcomes?
- Room size analysis: How large can ALCs become, while keeping good effects on student engagement?

ALC Research: New Directions

Questions?

how active learning classrooms create learning environments that

APPLY THE BIOLOGY OF LEARNING

Leveraging an active learning class: an active learning course

Biology 2002 – Foundations of Biology Teaching Goals:

- Apply the biology of learning
- Focus on higher order skills
- Represent authentic work of biologists

What is learning?

What is learning?

Psychology

Information, ideas, & skills that a person can

- Use after a significant period of disuse
- Apply to a new problem

http://bjorklab.psych.ucla.edu/research.html

Biology

What is teaching?

Architecture

Creating conditions in which learning can happen

Brain change!

Learner Centered Teaching

Putting the Research on Learning into Practice Terry Doyle

Biology 2002 applies basic principles of learning.

- Each brain is unique.
- What I pay attention to is what I learn.
- More senses = more learning.
- The person who does the work learns.
- Making memories requires repetition, elaboration, & sleep.
- The brain is social.
- Metacognition enhances learning.

After four years of college, what should you be able **to do**?

We try to focus on higher levels of Bloom's taxonomy of cognition.

Evaluation Synthesis Analysis Application Understanding Knowledge

Leveraging an active learning class: an active learning course

Biology 2002 – Foundations of Biology for Majors

Goals:

- Apply the biology of learning
- Focus on higher order skills
- Represent authentic work of biologists

Learn biology by being a biologist...

What are the learning outcomes of the foundations courses?

You will...

Learn foundational biology concepts in an evolutionary context

It is very important that you learn about traxoline.

Traxoline is a new form of zionter. It is montilled in Ceristanna. The Ceristannians gristerlate large amounts of fevon and then brachter it to quasel traxoline. Traxoline may well be one of our most lukized snezlaus in the future because of our zionter lescelidge.

<u>Directions</u>: Answer the following questions in complete sentences.

- 1. What is traxoline?
- 2. Where is traxoline montilled?
- 3. How is traxoline quaselled?
- 4. Why is it important to know about traxoline?
- ---Judy Lanier

What are the learning outcomes of the Foundations courses?

You will...

- Learn foundational biology concepts in an evolutionary context
- Develop foundational skills needed for success in science & future careers
 - Problem solving, critical thinking
 - Data analysis & interpretation
 - Laboratory skills & experimental design
 - Team work & Communication
 - Quantitative reasoning

What's different about Foundations?

Learning outcomes

Bloom's taxonomy

Class activities & Assessments

Biology concepts

Knowledge & understanding

Text, self-tests, quizzes

Critical thinking, communication skills, team work, collaboration, skills for life after college, etc.

Application & analysis

Concept lab activities; Exams

Synthesis & evaluation

Team projects; Exams

Concept Lab General Schedule

DAY	TIME	ACTIVITY
Monday	35 minutes	Learning readiness quizzes & debrief
115 minutes	55 minutes	Application & Analysis Activities
	10 minutes	Metacognition
Wednesday	60 minutes	Application & Analysis Activities
115 minutes	45 minutes	Team Project Work
	10 minutes	Metacognition
Friday	100 minutes	Team Project Work
115 minutes		Office Hours
		Exam discussion, etc.
	10 minutes	Metacognition

Knowledge & Understanding

- Before class
- Study guides
- Text book
- Self-tests
- In class
- Quizzes

Application & Analysis

- Problems
- Simulations
- Videos
- Data Analysis
- Discussions
- Models
- □ etc.

Synthesis & Evaluation

Questions?

Comments & Feedback Welcome:

Jeremy Todd, toddx012@umn.edu

J.D. Walker, jdwalker@umn.edu

Robin Wright, wrightr@umn.edu

http://z.umn.edu/lsr

Upcoming LSC Activities

- LSC Webinar: The University of Illinois at Chicago
 Experience with Project Oasis, an Informal Learning Space
 Program
 - December 11, 2012 / 4:00p.m. EST
- LSC Workshop at Portland State University
 - > February 9, 2013

Contact Information

For more information:

http://www.pkallsc.org/

