ARCHITECT POSTERS

<table>
<thead>
<tr>
<th>Posters</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ayers Saint Gross: Semans-Griswold Environmental Hall - Washington College</td>
<td>2</td>
</tr>
<tr>
<td>Clark Nexsen: vers un habitat inclusif!</td>
<td>3</td>
</tr>
<tr>
<td>Ellenzweig: New STEM Learning Complex with Re-purposed Power Plant - Michigan State University</td>
<td>4</td>
</tr>
<tr>
<td>EwingCole via the Jacobs-EwingCole JV: Cyber Engineering and Academic Center - US Military Academy</td>
<td>5</td>
</tr>
<tr>
<td>Gould Evans: Earth, Energy, and Environment Center - University of Kansas</td>
<td>6</td>
</tr>
<tr>
<td>Hanbury: Flexible Classroom Prototype</td>
<td>7</td>
</tr>
<tr>
<td>HMA2: American University of Central Asia</td>
<td>8</td>
</tr>
<tr>
<td>HOK: Academic Workplace Design - George Washington University, Morgan State University, University of Southern California</td>
<td>9</td>
</tr>
<tr>
<td>Perkins&Will: Center for Natural Sciences, Mathematics and Nursing - Bowie State University</td>
<td>10</td>
</tr>
<tr>
<td>Research Facilities Design: New Center for the Sciences - Valparaiso University</td>
<td>11</td>
</tr>
<tr>
<td>The Sextant Group: Executive Hall for Entrepreneurship and Innovation - University of Missouri Kansas City</td>
<td>12</td>
</tr>
<tr>
<td>Shepley Bulfinch: Center for Innovation and Collaboration - Loyola University Maryland</td>
<td>13</td>
</tr>
<tr>
<td>Skidmore, Owings & Merrill LLP: The Milstein Center - Barnard College</td>
<td>14</td>
</tr>
<tr>
<td>The S/L/A/M Collaborative: University of Notre Dame</td>
<td>15</td>
</tr>
<tr>
<td>VMDO: Greer Environmental Sciences Center - Virginia Wesleyan University</td>
<td>16</td>
</tr>
</tbody>
</table>
VISION/GOALS
The College aims to prepare the next generation of leaders to help solve the most pressing environmental problems of the 21st century. Washington College’s Semans-Griswold Environmental Hall aims to be a regional hub for hands-on research on the Chesapeake Bay and a magnet for thought leadership centered on the environmental challenges facing the region, the country, and the world.

The facility provides experiential teaching and research laboratory, academic, and office spaces that embody the environmental science program's commitment to sustainability and local ecology. Among its innovative design features is a state-of-the-art marine science lab that includes a river flow-through system, bringing ambient water from the Chester River to give faculty and students the unique ability to study river ecology and marine organism biology in a controlled environment.

Semans-Griswold Environmental Hall demonstrates the College's commitment to stewarding the finite resources of the Eastern Shore, leading the way for environmental study, preservation, and advocacy. The project aims to be a model for sustainable buildings.

PROCESS
The waterfront campus at Washington College was first visualized in 2008. After a decade of fundraising, College leadership worked with Ayers Saint Gross to refine the program and scope. Ayers Saint Gross involved teaching and research faculty as well as a high-performance building consultant to design a building that produces more energy than it uses in pursuit of the Living Building Challenge Petal Certification.

Semans-Griswold Environmental Hall houses the Center for Environment & Society at Washington College, one of three Signature Centers that focus on providing undergraduate students with graduate-level experiences outside of the classroom.

OUTCOMES

INNOVATIVE LAB SPACES
Wet Lab and River Flow Through System—The wet lab hosts a river flow through system, which pumps water from the Chester River directly into and out of the lab, allowing students to study different aspects of the Chester River in a controlled environment using water directly from the river.

Watershed Innovation Lab—The lab serves as the home to CES’s Chester River Watershed Observatory. Students have the opportunity to work on buoys that monitor the river's water quality, side scan sonar, building AquaBotz and more.

Environmental Research Lab—The third lab serves as a laboratory learning space for hands-on research.

CLASSROOM
The classroom, located adjacent to the main commons and along the front porch of the facility, offers sweeping views to the Chester River. The space seats 24 and utilizes flexible, adjustable furnishings to allow for pedagogical adaptation to the evolving curriculum. Glass doors with a 180-degree swing allow the classroom and adjacent commons space to flex and accommodate a larger crowd of students for special events.

TAKE-AWAY RECOMMENDATIONS
Ayers Saint Gross found it important to work directly with the stakeholders, in this case, the researchers who would work in this building daily. The research team prioritized natural light and access as the top needs for their space. All spaces in the building are visually accessible to one another—making for ease of movement through the space, collaboration between researchers, and also putting learning on display for the students who will work and take classes in the facility. To design a facility that functions for sensitive and high-level research, it is important to listen to and earn the trust of the faculty.
VERS UN HABITAT INCLUSIF!

This is a call for a truly inclusive environment for a varied habitat - conceived, designed and constructed to accommodate all modes of thinking.

Most standardized tests, like the SATs, are famously centered on assessing verbal and mathematical competences. And most office and learning environments follow suit.

We have effectively premised the verbal and the mathematical. In doing so, we have consistently included and supported some individuals, but not all. Whatever we have not explicitly included, we have (de facto) excluded.

As legitimate as they are, the verbal and the mathematical are but two of the many recognized modes of processing information - of thinking, of learning, of working. There is also (at least) the visual, and the aural, and the kinesthetic.

We are now more aware of these fundamental distinctions. But awareness is not acceptance, and mere acceptance does not constitute inclusion.

So what will be provided for those who are more naturally effective, focused, productive, creative, and prolific when they paint, or sing, or dance, or construct?

And what will be provided for those individuals who engage more than one model? For those who are proficient with both a primacy mode and a secondary mode? Or for those who engage various modalities and process by alternating between a single mode, dual modes, or multiple modes?

This is a call for a truly inclusive environment for a varied habitat - conceived, designed and constructed to accommodate all modes of thinking.

To support/underwrite the contributions of each individual. To support the whole person. To value the whole self, the whole individual, the whole population.

This extends to the ability to work both individually and in teams of various sizes. And applies as much to workplaces and offices as it does to schools and campuses.

When realized, these habitats must be capable of supporting statements such as:

- "I'll read while you paint!"
- "Your team should dance while we team sings."

We are already capable of realizing such habitats. They can be achieved technologically. We can design and construct rooms and chambers with the physical attributes, dimensions, finishes, furniture to support an expanded range of activities. And they can be modified or "tuned" as needed: Simultaneous conditions such as lighting, sound, temperature, color, aroma, tidiness, configuration, and privacy can be adjusted according to preference and tolerance. Distractions can be reduced. Affordances can be multiplied.

This is what it will mean to have inclusive environments. Environments that are truly designed for inclusion.

This is a matter of determination then design. It now remains to determine who values the potential fluids of this inclusive habitat, and more importantly, the people whom it supports, enough to capitalize the necessary investment.

And most office and learning environments follow suit.

As legitimate as they are, the verbal and the mathematical are but two of the many recognized modes of processing information - of thinking, of learning, of working. The existence of these fundamental differences.

We are now more aware of these fundamental distinctions. But awareness is not acceptance, and mere acceptance does not constitute inclusion.

So what will be provided for those who are more naturally effective, focused, productive, creative, and prolific when they paint, or sing, or dance, or construct?

And what will be provided for those individuals who engage more than one model? For those who are proficient with both a primacy mode and a secondary mode? Or for those who engage various modalities and process by alternating between a single mode, dual modes, or multiple modes?

This is a call for a truly inclusive environment for a varied habitat - conceived, designed and constructed to accommodate all modes of thinking.

To support/underwrite the contributions of each individual. To support the whole person. To value the whole self, the whole individual, the whole population.

This extends to the ability to work both individually and in teams of various sizes. And applies as much to workplaces and offices as it does to schools and campuses.

When realized, these habitats must be capable of supporting statements such as:

- "I'll read while you paint!"
- "Your team should dance while we team sings."

We are already capable of realizing such habitats. They can be achieved technologically. We can design and construct rooms and chambers with the physical attributes, dimensions, finishes, furniture to support an expanded range of activities. And they can be modified or "tuned" as needed: Simultaneous conditions such as lighting, sound, temperature, color, aroma, tidiness, configuration, and privacy can be adjusted according to preference and tolerance. Distractions can be reduced. Affordances can be multiplied.

This is what it will mean to have inclusive environments. Environments that are truly designed for inclusion.

This is a matter of determination then design. It now remains to determine who values the potential fluids of this inclusive habitat, and more importantly, the people whom it supports, enough to capitalize the necessary investment.
Learning Spaces Collaboratory
2019 National Colloquium

New STEM Building
Flexible Lab Module

New STEM Learning Complex with Repurposed Power Plant
Michigan State University

Video Goals
The goal of the project is to make a learning ecosystem - an integrated learning center that brings together several distinct components:
- Computer Science, Biology, Materials Science, Physics
- Interdisciplinary initiatives
- Open-ended project labs
- Student-oriented initiatives
- Learning spaces
- Student project work
- Resource and technology

Process
- An interdisciplinary team was established for the entire project duration
- Learning spaces were established using a modular and flexible approach
- Interactive, open-ended project labs were held to transform ways to create learning
- Student project work was emphasized for design and coordination purposes
- Multi-Tether structure was selected after comparison of conveniences

Lesson Learned
- Flexible lab spaces require an investment in a robust infrastructure system
- Implementing a flexible lab infrastructure requires extensive coordination between the building and senior project leadership
- Utilizing an interdisciplinary engineering design benefits study of familial details

Outcomes
The STEM learning spaces are designed to facilitate an innovative new curriculum, building on team-based, active-learning initiatives. Each space is equipped with a suite of modular laboratory equipment to support diverse learning objectives, including interdisciplinary projects. The new space will be reconfigurable for a variety of disciplines over time.
INCLUSIVITY WITHIN THE U.S. MILITARY ACADEMY

CYBER & ENGINEERING ACADEMIC CENTER - WEST POINT, NY

<table>
<thead>
<tr>
<th>ARCHITECT:</th>
<th>Jacobs / EwingCole - Joint Venture Lab Consultant: EwingCole</th>
</tr>
</thead>
<tbody>
<tr>
<td>PROGRAM:</td>
<td>Provide innovative labs for Civil & Mechanical Engineering (CME), Electrical Engineering & Computer Science (EECS) and Systems Engineering (SE) + 450 Car Parking Structure + Bridge and Conference Center</td>
</tr>
<tr>
<td>DATA:</td>
<td>136,000 Gross Square Feet 82,600 Net Square Feet</td>
</tr>
</tbody>
</table>

GOALS AND OBJECTIVES:
- Develop a facility that is state-of-the-art, cutting edge, and inspirational
- Create a building that contextually integrates into the campus
- Provide an efficient layout based on the proposed program and adjacency requirements
- Develop a floor plan that promotes collaborative academic opportunities between cadets, cadets and faculty, and between the 3 departments of CME, EECS, & SE
- Strengthen the quality of STEM education at the Academy
- Attracting STEM talent for West Point, the Army, and the nation
- Integrating STEM knowledge and skills across fields
- Enabling cadets, faculty, industry partners, and military leaders to quickly synthesize and share massive quantities of data, test prototypes, strategize STEM innovations, and evaluate ethical considerations

INTENDED OUTCOMES:
- In response to rapidly changing technology in the modern world, on the battlefield, and throughout the Army at large, CEAC will reflect West Point’s growing leadership in the development and application of STEM-based solutions to the most difficult global challenges
- CEAC will enable and inspire the kinds of collaboration across disciplines that simply cannot happen now in the current academic spaces
- It will prepare cadets to confront the increasingly technological challenges of peacekeeping and defense
- Emphasizes shared technology and collaboration for advanced problem-solving
- Incorporates shared maker spaces, labs, & capstones to create an environment of interdisciplinary engineering
- Maximizes efficiency and flexibility in planning
- Will help to recruit the “best of the best” to join USMA

BOTTOM LINE:
“The bottom line is that CEAC will directly support General Milley’s (Army’s 39th Chief of Staff) vision of a technically competent force that can tackle complex problems.”

Dr. Led Klosky, PE, Dean’s Executive Agent for Design and Construction

PROJECT VISION:
- CYBER SECURITY - Multiple digital connections allows for cyber warfare amongst cadets
- SYSTEMS DESIGN - Digital planning by collaborating with massive amounts of data
- HIGH BAY - Inviting creativity and risk-taking for developing future inventions for the Army
- ROBOTICS - Interdisciplinary effort - civil, mechanical, electrical & computer science
- TESTING LAB - Developing devices to replace direct human interaction on the battlefield
UNIVERSITY OF KANSAS EARTH, ENERGY & ENVIRONMENT CENTER

Breaking down historic academic silos:
An integrative model for student learning, student success, and improved post-graduate readiness is developed via a series of integrative planning strategies.

Design Architect:
Gould Evans in association with Cannon Design

Size: 141,000 GSF
Completion: December 2017
Cost: $78.5 M

Strategy:
- Combine earth sciences and engineering, as well as energy and environmental research
- Support advancement of pedagogical scholarship through flexible, active learning classrooms
- Integrate advanced programs with industry partners despite location in a non-urban area
- Emphasize the way programs support student success for women and minorities in engineering
- Integrate research and academic studies that were previously separate to support team-based learning models
- Conduct post-occupancy research, looking at the university’s various active learning models

Outcome:
- Changed the campus paradigm by providing program space for disciplines typically siloed
- Greater student success and equity to all engineering students
- Industry partnerships benefit faculty in acquiring research funding and students in acquiring real-world experiences
- Improved overall diversity within the engineering programs
- Increased overall effectiveness of new learning strategies
- Deeper understanding of the impact of integrative initiatives to deploy elsewhere on campus
Flexible Classroom Prototype

"Space as a Swiss Army Knife"

Some of the possibilities to configure the space

HANBURY

LSC Sponsor
Where the former Soviet Union’s eastern border met the ancient Silk Road is the new campus for the American University of Central Asia (AUCA) in Bishkek, Kyrgyzstan. The architecture, inspired by local nomadic traditions of mobility and hospitality, supports an American style education.

The design’s open and flexible spaces are densely woven to generate a free exchange of ideas and high energy. At the same time, AUCA comfortably accommodates its 1,600 students in 125 square feet per student, which is half the median area per student at American colleges, as reported by American School and University.

Students inhabit the diverse campus spaces like nomads with iPads. Faculty and administrators migrate from open office suites to communal banks of quiet meeting and study rooms. The furniture is nomadic too. Tables and seating on wheels beckon anyone to freely stage spaces.

Innovative planning and a joy-filled dynamic interior with pleasing symmetry. —LOUIS I. KAHN

HMA2 Architects
Associated Firms: AKF Group (MEP), Thornton Tomasetti (Structure), Fisher Marantz Stone (Lighting), Ardar (Architect and Engineer, Bishkek), Kent Imhaas (Construction Manager)

Design team
Henry Myerberg (Principal-in-Charge), Christine Sheridan (Project Architect), Miranda Danusugondo (Project Manager), Owen Huang (Architect), Karen Foley (Designer), Bryan Jag (Architect), Aida Sulvba (Design), Tudor Vemeste and Airway Longhorn Graphic Design, Karen Davidov (Designer)

Client
American University of Central Asia

Area
200,000 sq. ft.

Total cost
$27,000,000

Capacity
1,600

Space per student
125 sq. ft.

Cost/square foot
$135

Completion
August 2015

Photographer
Christine Sheridan, Henry Myerberg

“Appreciate the allusions to local culture. Facade has interesting design elements with a nice mixture of materials, forms, and colors. Innovative planning and a joy-filled dynamic interior with pleasing symmetry.” —2017 JURY

“The new AUCA campus building brilliantly models the behaviors and modes of thought we try to inculcate in our entire community: openness, transparency, and flexibility.” —ANDREW WACELE, PRESIDENT, AMERICAN UNIVERSITY OF CENTRAL ASIA, BISHKEK, KYRGYZSTAN
Learning Spaces Collaboratory

2019 National Colloquium

Flexible and agile to accommodate a more diverse workforce and to accommodate a higher degree of movement amongst workers, both internally and externally. To stay relevant in a rapidly changing world, the space will have to be designed to adapt to emerging trends.

Adaptable and designed to be human-centric and have some personality to them, which is essential. The desire for work-life balance and a more social setting means many are seeking to bring home to work. Hence, we are seeing a more residential or hospitality feel entering the workplace.

Close proximity is a key element in successful cross-pollination of people and there is a renewed emphasis on vertical connections throughout the building and horizontal connections with the community and nature.

Support a variety of workstyles and reflect what, when and how people are working. To enable that, we need to create places where we can work, meet, learn, refresh and be social.

- George Washington University
 - Corcoran Hall, Washington, DC
 - 1. Physics Department faculty cafe
 - 2. Grad Student breakout space in typical Physics research neighborhood

- Morgan State University
 - Jenkins Hall, Baltimore, MD
 - 3. Building Atrium with sight line to faculty meeting pods
 - 4. Typical faculty meeting pod

- University of Southern California
 - Michelson Hall, Los Angeles, CA
 - 5. Multipurpose flexible classroom with operable partition to building lobby
 - 6. Research lounge adjacent to cleanroom
 - 7. Typical public amenity space
 - 8. Write-up space adjacent to research labs

How Space is Allocated

- Healthcare - 1%
- Classrooms - 3%
- Instructional Labs - 5%
- Study/Library Space - 7%
- Special Use Instructional Space - 9%
- General Use - 9%
- Research Labs - 10%
- Institutional Support Space - 11%
- Residential - 22%
- Office Space - 23%

Choice, Focus, Collaboration

Support a variety of workstyles and reflect what, when and how people are working. To enable that, we need to create places where we can work, meet, learn, refresh and be social.
The Center for Natural Sciences, Mathematics and Nursing at Bowie State—one of our nation’s oldest Historically Black College/Universities—is designed to inspire, empower and increase minority success in fields of STEM and Nursing.

Learn more at pwBSU.com

Bachelor's Degrees Earned by African Americans

- Biology
- Chemistry
- Math & Stats
- Engineering
- Physics
- Earth Sciences

Source: IPEDS, US Census and APS
VALPARAISO UNIVERSITY Center for the Sciences

Building Architect: Hastings & Chivetta
Lab Consultant: Research Facilities Design

Building Area: 57,426 Gross SF
Net Area: 32,285 Net SF

Construction Cost: $21.6 million
Completion Year: 2017

VISION/GOALS:
- Program/pedagogy drives space needs - highlight importance of STEM at Valpo.
- High quality faculty / student research space to improve research outcomes.
- Facility design should aid recruitment and retention of faculty and students.
- Building location & design to promote synergy with the College of Engineering.
- Embrace modern AV & IT technologies.
- Incorporate smart sustainable practices.
- Promote efficiency of space utilization through appropriate sharing.
- Provide ample spaces for student study and collaboration throughout building.
- Create an open, transparent design to encourage connections, activate the building, and promote interdisciplinary interactions / collaborations.

PROCESS:
Inclusive, iterative, consensus-building process with active participation by science faculty, staff, administrators, students, development office, and other non-science constituents on campus throughout the planning, programming and design phases of the project.

LESSONS LEARNED:
Planning process reinforced that broad based input from all stakeholders on campus is essential. In particular, vocal faculty proved to be critical in enhancing the original project budget to create a facility with 'critical mass' to form a viable STEM community.

OUTCOMES:
- Pedagogical initiatives had a positive impact on the program & facility design.
- Modern faculty / student research lab space has greatly enhanced undergraduate research opportunities.
- The new facility has spiked interest in STEM programs among student recruits.
- Building is located adjacent to College of Engineering. Planned future phase may physically connect to Engineering.
- AV / IT technologies were successfully utilized throughout the building.
- Facility features some shared teaching labs, research labs, and support spaces to create efficient utilization.
- Open study spaces & interior windows create a welcoming environment and promote a true STEM community.

TAKE-AWAY RECOMMENDATIONS:
- Encourage input from a broad base of stakeholders on campus in an iterative, participatory, consensus-building process for optimal satisfaction / results.
- Ensure that your academic planning process precedes any facility programming and design decisions. Allow the time it takes to 'get it right'.
- Learn from others through facility tours with your planning team. There are lots of great examples and it is a good ‘team-building’ experience.
PLANNING FOR NEXT GENERATION LEARNING ENVIRONMENTS

Faculty and student voices are critical to the planning process.

The outcome? Student centered teaching and learning environments.

- Collaborative
- Flexible
- Adaptable
- Multi-disciplinary

“The NASA simulation you developed was genius. It was the epitome of effective “learning by doing”. You can’t get that from a traditional lecture, book or online video. It was also fun to see our faculty so engaged. I have no doubt that the active learning experience you provided will transform our concept of learning and set the stage for what is possible for years to come.”

– Sandy Bretz
Executive Assistant to the Dean, UMKC

University of Missouri Kansas City Bloch School of Management
Loyola’s collegiate foundation is based upon the Jesuit virtue of exploration; to go forth and create meaningful professional service and leadership. Connection to community expresses itself not only in sending students out into the world but also inviting the world in.

Inclusivity

The Center for Innovative & Collaborative Learning began with a five month planning study that engaged a breadth of Loyola’s community in bi-weekly meetings with the Steering Committee. Engagement and consensus-building—centered around “promoting Ignatian citizenship”—occurred with faculty, staff, and students. This process allowed the team to accomplish the following:

- Develop a set of guiding principles.
- Understand current and future needs.
- Identity challenges and opportunities for Beatty Hall and adjacent sites.
- Explore planning scenarios.
- Refine a preferred scenario into a preliminary design and massing concept.

Ecosystem

The building provides a variety of space types that allow for different ways for students and faculty to learn, research, meet, and engage as a community. Approximately 70% of the program area will be shared space that supports innovation and collaborative learning. This includes a wide range of instructional spaces to serve varying pedagogical modes, the Idea Lab, the multi-use Commons and the Cafe, as well as one of Loyola’s signature programs—the Career Services Center. The balance of the space will accommodate interdisciplinary faculty office and research space for Psychology, the School of Education, Speech, Language and Hearing, and Sociology.

Permeability

The Center for Integrative & Collaborative Learning will serve not only as a physical gateway to campus but also as a link to the community and life after Loyola. The give and take is at the nexus of the renovation and addition to Beatty Hall. The project blends academic research and professional opportunities through collaborative spaces where students, faculty, and businesses engage with each other. Loyola’s decision to move the Career Center to this building ensures that permeability will happen serendipitously and programmatically—strengthening personal and professional connections.

Recommendations

- Understand the opportunities your project strives for to better involve the right stakeholders early in the planning process.
- Project outcome will better reflect student needs if they are engaged as key participants.
- Successful academic ecosystems require a variety of space types to support: learning styles, introverted vs extroverted engagement, programmatic flexibility.
- Ensuring balance of transparency to and through the building can connect the collegiate environment to the larger community.
The Milstein Center at Barnard College
Creating Permeable Teaching and Learning Spaces

Date Completed Size
Fall 2018 128,000 GSF

The Milstein Center serves as a crossroads for the campus, the community, and the city. It is an interdisciplinary place where students and faculty can learn by doing, engage in robust dialogues, and visualize ideas. Within this centrally located building, all disciplines have equal access to a variety of academic centers including the Center for Engaged Pedagogy, Digital Humanities, Empirical Center, Movement Sciences Lab, Slate Media Center, and Computational Science Center.

The suite of centers within the Milstein Center provides students and faculty with powerful digital technologies to craft robust solutions to classroom problems, and encourages all disciplines to utilize data science in classroom instruction and research. Permeable learning spaces further support collaboration and transparency between these various fields. Students and staff can check out a book from the library, watch a dance performance analysis in the Movements Science Lab, or visualize data in the Computational Science Center.

More than just a library, the Milstein Center is a 12-story building with glass partitions, double height spaces, and communicating stairs that promote visual connections and spontaneous interactions. Since its opening in Fall 2018, it has quickly become an active hub for Barnard students and staff, and the local academic community.

“The Milstein Center is more than a wonderful new building. It is a game changer for Barnard... and it will help Barnard become even more extraordinary.”

Sian Beilock
President, Barnard College
Prior to the opening of Campus Crossroads, the Notre Dame stadium was used eight days out of the year for football home games and commencement. The gates were then locked, and the building was empty. This bold new facility, consisting of three buildings surrounding the stadium on the south, east, and west, now serves as a center of athletics, academics and student life, infused with increased energy and a new legacy that will be defined by the experiences shaped by students, faculty and community year-round.
A Gateway for Science and Sustainability
Greer Environmental Sciences Center | Virginia Wesleyan University

Vision: The Greer Environmental Sciences Center embodies Virginia Wesleyan University’s commitment to environmental sustainability for a thriving, cross-disciplinary sciences program.

Process: Providing an experience-based environmental sciences program, the Greer Environmental Sciences Center integrates and expands research, engagement, and learning opportunities at the academic crossroads of the University. During design, the project team focused on ways to tie specific building features to a range of courses, faculty projects, and collaborations with a network of Chesapeake Bay environmental partners—which has resulted in increased research projects between students, faculty, and community partners.

Outcomes: The Center creates an inspiring sense of place that physically and programmatically bridges disciplines, offers a welcoming portal to students, and invites the study of local ecology through immediately-accessible, hands-on opportunities. The Center has transformed life on campus—expanding undergraduate research and raising VWU’s campus and student profile.

Serving as a Portal for Community and Connection

“(...) We are using this facility to promote an ethic of sustainability on our campus. In classes and casual interactions, students and visitors learn more about sustainability and the environment. This facility has also allowed us to attract students in this field. Once they are here, we aim to provide a transformative education, using the building’s educational and sustainable features.” – Dr. Maynard Schaus, Vice President for Academic Affairs

Immersing Students in Science

Building as a Teaching Tool